Intra-abdominal Adipose Tissue as a Major Source of IL-6 in Experimental Colitis

W. Conan Mustain, MD
Adipose tissue – What is “fat”?

- Heterogenous tissue composed of mature adipocytes, preadipocytes, endothelial cells, macrophages, leukocytes, and fibroblasts

- In addition to energy storage, adipose tissue is now known to have important endocrine role in metabolism, immunity, and inflammation.

- Over 50 known adipokines including inflammatory cytokines (TNF-α, IL-6, MCP-1), growth factors (IGF-1, VEGF), and adipocyte-specific “adipormones”
Adipose tissue and Inflammation

- Obesity is now recognized as a chronic inflammatory condition
 - Macrophage infiltration of adipose tissue
 - Increased circulating CRP, IL-6, and adipokines
 - Increased fecal calprotectin levels

- Obesity-associated diseases are increasingly attributed to inflammation
 - Atherosclerosis
 - Prevalence of colorectal cancer
 - Severity of acute pancreatitis

- Visceral fat correlates with disease states more strongly than total body fat
Adipose tissue and IBD

• Hypertrophic mesenteric adipose tissue and fat-wrapping are hallmarks of Crohn’s disease
 – higher levels of TNF-a, IL-6, MCP-1, leptin, resistin, and adiponectin than healthy subjects
• Obesity associated with higher year-by-year disease activity in Crohn’s
Obesity and IBD

Prevalence and Epidemiology of Overweight and Obesity in Children with Inflammatory Bowel Disease

Millie D. Long, MD, MPH,1,2 Wallace V. Crandall, MD,3 Jean H. Leibowitz, MD,4 Lynn Duffy, MD,4
Fernando del Rosario, MD,5 Sandra C. Kim, MD,6 Mark J. Incolla, MD,7 James Berman, MD,7
John Grunow, MD,9 Richard B. Colletti, MD,10 Beth S. Schoen, MD,11 Ashish S. Patel, MD,12
Howard Baron, MD,13 Esther Israel, MD,14 George Russell, MD,15 Sabina Ali, MD,15 Hans H. Herfarth, MD,1,2
Christopher Martin, MSPH,1,2 and Michael D. Kappelman, MD, MPH1,2 on behalf of the
ImproveCareNow Collaborative for Pediatric IBD

Inflamm Bowel Dis • Volume 17, Number 10, October 2011

- Prevalence of obese/overweight in pediatric IBD population is 23.6% (20% in CD, 30.1% in UC)
Questions

• Does induction of colitis result in increased expression of inflammatory cytokines from adipose tissue in an animal model of IBD?

• Does intra-abdominal fat respond differently than subcutaneous fat?

• Do adipose-derived cytokines contribute to severity of colitis?
Methods

• Model
 – 2% dextran sulfate sodium in drinking water for 5 days
 – C57BL

• Mice sacrificed at Day 0, 3, 7, 14, and 21

• Outcomes
 – Representative animal for histology
 – Plasma cytokines by multiplex
 – Tissue mRNA levels by qRT-PCR
Results – Severity peaks at Day 14

Fig 1: After treatment with DSS, mice experienced significant decreases in body weight (a). Increases in Plasma IL-6 levels (b) and histologic evidence of colonic inflammation (c) were evident by Day 7 and peaked at Day 14.
Cytokine Expression in Colon

Fig 2. Colon mRNA levels of IL-6, TNF-α, and IL-1β were significantly increased by DSS treatment as early as Day 3. IL-6 levels were increased by 230 fold at Day 7 (a) making this the most prominent cytokine induced in colonic tissue.
IL-6 is induced in intra-abdominal adipose tissue

Fig 4. (a,b) IL-6 mRNA levels in Mesenteric (8.6 fold) and Epididymal (3.8 fold) Fat at Day 7 were significantly increased from baseline (c) No significant increase in Subcutaneous Fat IL-6 expression occurred with treatment. *P<0.05
IL-6 levels at Day 7

![Graph showing IL-6 mRNA levels](image)

Fig 5. Day 7 mRNA levels of IL-6 are significantly increased above control in colon, mesenteric fat, and epididymal fat. Adipose tissue levels at Day 7 are significantly higher than kidney or liver.
Preliminary Conclusions

• During acute experimental colitis, adipose tissue is a major source of IL-6 production.

• IL-6 is significantly induced from intra-abdominal, but not subcutaneous adipose tissue

• Peak in adipose-derived mRNA precedes peak plasma levels, suggesting a contribution by adipose tissue to circulating levels

• Epididymal fat pad changes suggest tissue-specific response rather than mere local lymphoid reaction to tissue injury
Further Questions/Plans

• Does adipose-derived IL-6 contribute to the severity of colitis?
 • Mice fed a high-fat diet have been shown to have more severe response to DSS
 • Preliminary data suggesting improved survival in SIRS with removal of epididymal fat

• Compare severity of colitis between caloric-restricted and high-fat diet mice, with and without removal of epididymal fat pad.
The Use of High Resolution Colonoscopy for Development of a Novel Orthotopic Murine Model of Colorectal Cancer
Animal models

- Needed to study mechanisms of pathogenesis but also to assess potential therapies
- Cannot recapitulate all aspects of human disease
- Advantages and limitations depending on outcome of interest
Murine Models of Colorectal Cancer

• Sporadic Models
 – Genetically-engineered (\textit{Apc} mutant, MutS/MutL, \textit{Muc2-/-})
 – Chemically-induced (AOM/DSS)

• Transplant Models
 – Heterotopic Xenografts
 – Metastasis Assays (IV or intra-splenic)
 – Surgical Orthotopic Implantation
Purpose

• Establish an orthotopic model of colorectal cancer via intramural cell injection using high-resolution colonoscopy

• Theoretical advantages
 – Orthotopic location
 – Minimally-invasive
 – Serial evaluation
Materials

• Equipment
 – Mini-endoscope
 • Karl-Storz Coloview ®
 • 1.9mm scope, sheath, biopsy forceps
 – Standard laparoscopic set-up
 • Donation from Stryker ®
 – Custom injection needle and Microliter syringe
 • Hamilton® Company
 • 6” 30G needle
Methods

• Cell suspension prepared in phosphate-buffered saline

• Mice anesthetized with ketamine-xylazine

• Scope inserted to mid-descending colon

• 25 mL cell-suspension injected into submucosa

• Weekly surveillance with colonoscopy
Procedure
Procedure
Methods
Video
Results

• Procedure tolerated well
 – 1 death due to perforation

• Tumors first visible at 14 days

• Histology confirmed tumor establishment in submucosa

• Tumor establishment rate of 83% (25/30 injections)
Complication
Conclusions

- Intramural injection in descending colon is possible

- Tumor growth can be reliably monitored on serial endoscopy

- Successful tumor establishment with multiple cell lines in immunocompetent and immunodeficient mice
Conclusions

• Disadvantages/Shortcomings
 – Technically challenging
 – Growth duration limited by obstruction
 – Inconsistency precludes comparative studies

• Applications
 – Cancer cell interactions with microenvironment
 – Tissue-specific gene knockout with Cre-recombinase