PERIOPERATIVE ANTIBIOTIC PROPHYLAXIS AND SURGICAL SITE INFECTION

Paul A. Kearney MD, FACS
Professor of Surgery
Chief, Section of Trauma and Critical Care
University of Kentucky
You ain’t gonna learn what you don’t want to know.

Grateful Dead
Department of Surgery 1964

- Ben Eiseman - Chairman
 - Frank C. Spencer
 - Benjamin Rush
 - Rene Menguy
 - Ward O. Griffen
 - Tom Brower
EXCESSALBE
HANDYCAP
RESTROOMS
Kentucky Dialect

- Versailles
- Vursales
- Athens
- Aythens
- Louisville
- Looavul
- Irvine
- Ervun
- Liketakillme
- Hurts like hell!
- Aherdat!

Affirmation or Agreement
“Survival of the fittest”

Herbert Spencer
Antibiotics and Resistance

- Close association between use of antibiotics and emergence of resistant pathogens
- Prior antibiotic exposure coupled with several other risk factors
 - Prolonged LOS
 - Presence of invasive devices

Kollef MH. Clin Infect Dis. 2000;31:S131-8
Factors Increasing Antibiotic Resistance

- Increased severity of illness
- More severely immunocompromised patients
- Newer devices and procedures
- Resistance in the community
- Ineffective infection control and compliance
- Increased prophylactic, empiric antibiotics
- Higher antibiotic use per area per unit time
Epidemiology

- 18 million surgical procedures yearly
 - 486,000 nosocomial infections
 - 20% in intensive care unit, with SICU highest risk
- Patients have longer and costlier hospitalization
 - Twice as likely to die
 - Mortality rate up to 44% in ICU patients
 - 60% more likely to spend time in ICU
 - Five times more likely to be re-admitted
 - Excess direct cost $5,038/infected patient

Emerging Pathogen

What is an emerging pathogen?
EMERGING INFECTIOUS DISEASES: DEFINITION

New, reemerging or drug-resistant infections whose incidence in humans has increased within the past two decades or whose incidence threatens to increase in the near future
What are the “Emerging Pathogens”?

- Multi-Drug Resistant Gram Negative Bacilli
 - ESBLs (*E. coli*, *Klebsiella*)
 - *P. aeruginosa*
 - *Acinetobacter* spp.
- Vancomycin-Resistant Enterococci
 - *Enterococcus faecium*
- Methicillin-Resistant *S. aureus*
- *Clostridium difficile*-Associated Disease
Consequences of Overuse of Cephalosporins

Third-Generation Cephalosporins

Overuse

- Klebsiella sp
- Eschericia coli with ESBLS*

- AmpC Enterobacter

- Enterococcus sp

Resistance

- Imipenem/cilistatin

Selection

- Pseudomonas sp
- Acinetobacter sp

- Fungi
- Yeast

- Vancomycin

No coverage

VRE**

*Extended Spectrum Beta-Lactamases ** Vancomycin Resistant Enterococci
Question 1
Which IV Antibiotic(s) Would You Choose for Prophylaxis of Elective Colon Surgery?

A. Ampicillin/sulbactam
B. Cefazolin
C. Cefoxitin
D. Ceftriaxone and metronidazole
E. Gentamicin and metronidazole
Question 1
Which IV Antibiotic(s) Would You Choose for Prophylaxis of Elective Colon Surgery?

A. Ampicillin/sulbactam
B. Cefazolin
C. Cefoxitin
D. Ceftriaxone and metronidazole
E. Gentamicin and metronidazole
Question 2
When Would You Administer The First Dose of Antibiotic(s)?

A. At 10:30 AM
B. “On call” to the OR
C. In the preoperative holding area
D. Upon induction of anesthesia
E. At the time of skin incision
Question 2
When Would You Administer The First Dose of Antibiotic(s)?

A. At 10:30 AM
B. “On call” to the OR
C. In the preoperative holding area
D. Upon induction of anesthesia
E. At the time of skin incision
Question 3
When would you give the next dose of antibiotic(s)?

A. At 4-hour point
B. At 6-hour point
C. In Recovery Room
D. None needed
Question 3
When would you give the next dose of antibiotic(s)?

A. At 4-hour point
B. At 6-hour point
C. In Recovery Room
D. None needed
Major Pathogens in Surgical Wound Infection

- S. aureus: 20%
- CNS: 18%
- Enterococci: 14%
- E. coli: 12%
- P. aeruginosa: 10%
- Enterobacter spp.: 8%
Appropriate Prophylactic AB
↓ infections
↓ mortality
↓ costs

Inappropriate Prophylactic AB
↑ adverse events
↑ likelihood resistant pathogens
↑ resistance globally
Appropriate Antibiotic Prophylaxis

- Shortest duration of antibiotics with equivalent efficacy
- Dosing at correct time interval
- Narrowest spectrum with equivalent efficacy
- Use of an antibiotic with good safety profile
Appropriate Antibiotic Prophylaxis

- Shortest duration of antibiotics with equivalent efficacy
- Dosing at correct time interval
- Narrowest spectrum with equivalent efficacy
- Use of an antibiotic with good safety profile
Duration of Therapy

- Period: 10/1/95 and 4/30/97
- Data from charts collected and retrospectively reviewed
- End points of study:
 - Frequency prophylaxis continued >24 h
 - Cost of prophylaxis given >1 d
 - Frequency of line infections and bacteremias in patients receiving <1 d vs. >4 days of prophylaxis

Effect of Duration on Infections

<table>
<thead>
<tr>
<th></th>
<th>All patients</th>
<th>Nontransplant patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of prophylaxis</td>
<td><1 day</td>
<td>>4 days</td>
</tr>
<tr>
<td>No. of patients</td>
<td>180</td>
<td>94</td>
</tr>
<tr>
<td>No. of patients developing bacteremia (%)</td>
<td>6 (3%)</td>
<td>16 (17%)</td>
</tr>
<tr>
<td></td>
<td>P<0.0001</td>
<td></td>
</tr>
<tr>
<td>No. of line infections (%)</td>
<td>4 (2%)</td>
<td>14 (15%)</td>
</tr>
<tr>
<td></td>
<td>P<0.0001</td>
<td></td>
</tr>
</tbody>
</table>

Appropriate Antibiotic Prophylaxis

• Shortest duration of antibiotics with equivalent efficacy

• Dosing at correct time interval

• Narrowest spectrum with equivalent efficacy

• Use of an antibiotic with good safety profile
Timing and Risk of Wound Infection

• Prospective study
 – 2847 patients
 – Elective clean or “clean-contaminated” surgery
 – Timing of prophylaxis
 • **Early** - 2 to 24 hrs pre-operatively
 • **Preoperatively** - ≤2 h before the incision
 • **Perioperative** - ≤3 h after incision
 • **Postoperative** - >3 and <24 h after incision

Relation Between Timing and Surgical Wound Rate

Timeliness of Antibiotic Prophylaxis

- Retrospective review of charts
 - Abdominal aortic aneurysm repair
 - Partial or total hip replacement
 - Large bowel resection

- 44 teaching hospitals in New York State
 - 2256 Medicare patients
 - 395 Medicaid patients

Timeliness of Antibiotic Prophylaxis

- 44 different Abx utilized
- 14% received no antibiotics
- 37% of those Rx’ed received at inappropriate time
- Recommend delegating prophylaxis to anesthesia team

UNIVERSITY OF KENTUCKY HOSPITAL
Cardiovascular Surgery
Pre-op Antibiotic Usage
July 2000 - September 2001

- No PAB: 6%
- After Incision: 6%
- Given/No Time Documented: 13%
- < 30 Min: 15%
- 31 - 1 Hr: 23%
- >1 Hr < 2 Hr: 20%
- >2 Hr: 17%
Timing of Administration

Prophylactic antibiotics
 – Induction of anesthesia

Re-dose antibiotics if
 – procedures > 4 hrs
 – major blood loss during procedure
Appropriate Antibiotic Prophylaxis

- Shortest duration of antibiotics with equivalent efficacy
- Dosing at correct time interval
- Narrowest spectrum with equivalent efficacy
- Use of an antibiotic with good safety profile
EMERGENCE OF MRSA

Organisms Isolated from Infectious Foci

% Rate of Resistance

1982-84 1985-87 1988-90

TYPES OF PROPHYLAXIS PROVIDED OVER TIME

Rates of Cephalosporin Usage

* P<0.01 vs. Index Period (1982-1984)

Results of Interventions

Organisms Isolated from Infectious Foci

- MSSA
- MRSA
- Enterococcus
- E. coli
- Fungi

RESULTS

• Overuse of 3rd-generation cephalosporins for extended periods caused an MRSA outbreak
• Long-term prophylaxis did not lower infection rates
• MRSA rates decreased as usage of third-generation cephalosporins declined
• Prophylaxis with first- or second-generation cephalosporins should be as brief as possible

Appropriate Antibiotic Prophylaxis

- Shortest duration of antibiotics with equivalent efficacy
- Dosing at correct time interval
- Narrowest spectrum with equivalent efficacy
- Use of an antibiotic with good safety profile
Safety Issues

Antibiotic use and adverse drug events (ADEs)

- 4031 tertiary care center admissions for ADEs and potential ADEs
- Antibiotics second most common drug class for ADEs
- ADEs in 24% of those receiving antibiotics

Bates DW, et al *JAMA* 1995; 274: 29-34
INDICATIONS FOR ANTIBIOTICS

Potential Role of Prophylaxis

Clostridium difficile Colonization Following a Single Dose

(N=103)

<table>
<thead>
<tr>
<th>Medication</th>
<th>Colonization at 14 Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cephalosporins</td>
<td>23</td>
</tr>
<tr>
<td>Cefazolin</td>
<td>14.3</td>
</tr>
<tr>
<td>Cefoxitin</td>
<td>8.3</td>
</tr>
<tr>
<td>Cefotetan</td>
<td>20</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>25</td>
</tr>
<tr>
<td>Cefoperazone</td>
<td>43.7</td>
</tr>
<tr>
<td>Mezlocillin</td>
<td>3.3</td>
</tr>
<tr>
<td>Control (none)</td>
<td>0</td>
</tr>
</tbody>
</table>

RESULTS

• Most frequent indicators of CDAD
 – Abdominal pain
 – Distention
 – Nausea
 – Fever

• White blood cells and presence or absence of blood in stool did not contribute to diagnosis

INCIDENCE OF CDAD

RESULTS

- Strong positive correlation with 3rd-generation cephalosporins
- Strong negative correlation for ticarcillin/clavulanate, aminoglycosides, and metronidazole
- Increased association with IV vancomycin but not statistically
- No correlation for 1st- or 2nd-generation cephalosporins or erythromycin

Antibiotic Utilization in Surgical Patients with *C. difficile*-associated Diarrhea

- Ciprofloxacin and cefoxitin most common antibiotics prescribed before diagnosis
- Patients with *C. difficile* had higher mortality compared with control
 - (31% vs. 11% (p = 0.01))
- Time from completion of antibiotic course to diagnosis was 7 +/- 2 days
- 16% developed diarrhea after prophylactic antibiotics

PROBLEM

• CDAD currently principal cause of diarrhea in the hospital
• Incidence of CDAD increasing
• Broad-spectrum antibiotics alter normal aerobic/anaerobic balance
 – Reduced “colonization resistance”
• Third-generation cephalosporins implicated
 – Cefotaxime
 – Ceftriaxone

RESULTS

ASSOCIATION OF SELECTED ANTIMICROBIAL WITH CDAD

<table>
<thead>
<tr>
<th>Agent</th>
<th>Association with CDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clindamycin</td>
<td>++</td>
</tr>
<tr>
<td>2nd- and 3rd-Generation Cephalsporins</td>
<td>++</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>++</td>
</tr>
<tr>
<td>Amp/sulbactam</td>
<td>+</td>
</tr>
<tr>
<td>Carbapenems</td>
<td>+</td>
</tr>
<tr>
<td>Pip/tazo</td>
<td>-</td>
</tr>
<tr>
<td>Ticar/clav</td>
<td>-</td>
</tr>
</tbody>
</table>

++ Common + Uncommon - Rare
When Should Antibiotic Prophylaxis Be Used?

• Surgical procedures with a high rate of wound infections
 – clean-contaminated, contaminated
• Implantation of prosthetic materials
• Surgical procedures where infection would have severe consequences
Traditional Classification of Operative Procedures and Risk of Infection

<table>
<thead>
<tr>
<th>Type of Procedure</th>
<th>Risk of SSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean</td>
<td>< 2 %</td>
</tr>
<tr>
<td>Clean-Contaminated</td>
<td>5 - 15 %</td>
</tr>
<tr>
<td>Contaminated</td>
<td>15 - 30 %</td>
</tr>
<tr>
<td>Dirty*</td>
<td>>30%</td>
</tr>
</tbody>
</table>

Dirty wounds ≈ infection - antibiotics indicated as therapy

Medical Conditions Known to Increase Risk of Surgical Site Infection

- extremes of age
- undernutrition
- obesity
- diabetes
- prior site irradiation
- hypoxemia
- remote infection
- corticosteroid therapy
- recent operation
- chronic inflammation

Antibiotic prophylaxis may be indicated in clean cases when associated conditions increase infection risk.
NNIS Risk Index as a Predictor of Risk of Infection

<table>
<thead>
<tr>
<th>Traditional Class</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean</td>
<td>1.0%</td>
<td>2.3%</td>
<td>5.4%</td>
<td>NA</td>
<td>2.1%</td>
</tr>
<tr>
<td>Clean/Contam</td>
<td>2.1%</td>
<td>4.0%</td>
<td>9.5%</td>
<td>NA</td>
<td>3.3%</td>
</tr>
<tr>
<td>Contaminated</td>
<td>NA</td>
<td>3.4%</td>
<td>6.6%</td>
<td>13.2%</td>
<td>6.4%</td>
</tr>
<tr>
<td>Dirty</td>
<td>NA</td>
<td>3.1%</td>
<td>8.1%</td>
<td>12.8%</td>
<td>7.1%</td>
</tr>
<tr>
<td>All</td>
<td>1.5%</td>
<td>2.9%</td>
<td>6.8%</td>
<td>13.0%</td>
<td>2.8%</td>
</tr>
</tbody>
</table>

Nichols RL, Martone WJ. *Surgery* 2000; 128: S2-S13
Technical Factors May Outweigh Benefit

- Fluid/blood collections
- Ischemia/poor blood supply
- Inoculum
Clean Surgical Procedures

- Most do not require antibiotics
- Indicated in:
 - Prosthetic materials
 - Cardiothoracic, vascular procedures
 - Possibly breast and hernia
- Likely pathogens:
 - Above waist
 - Gram positive aerobic coverage - cefazolin
 - Below waist
 - Gram positive and Gram negative enterics - cefazolin

Clean Surgical Procedures

Special Circumstances

• Increased risk of MRSA
 – known colonization with MRSA
 – hospital MRSA infection rate at > 50%
 – ?chronic dialysis, chronic diabetic foot ulcers

• Vancomycin alone - above the waist
• Vancomycin alone - below waist
Clean Contaminated/Contaminated Procedures

Head and Neck
- cefazolin ± metronidazole
- clindamycin ± gentamicin

Gastroduodenal
- cefazolin - high risk only

Biliary tract
- cefazolin - high risk only
- ?2GC or Amp/sul
- laparoscopic - none

Appendectomy (non-perf)
- Ampicillin/sulbactam

Colorectal
- oral prep
 - neomycin + eryth.
- Ampicillin/sulbactam
 - ± combination in high risk

Gynecologic
- cefazolin or Ampicillin/sulbactam
Appropriate Duration of Therapy

- Single dose therapy is as effective as multiple doses in majority of studies
 - Longer therapy indicated in some cases
 - usually related to inadequate data
 - No studies indicate prophylaxis longer than 72 hrs is beneficial
 - No studies support continuing therapy for drains/tubes
Appropriate Duration of Therapy

Neurosurgical

• Recommendation: single dose
 – meta-analysis found no difference in single vs multiple dose regimens

Head and Neck

• Recommendation: ≤ 24 hours
 – single dose/< 24 hours not studied

Am J Health Syst Pharm 1999; 56:1839-88
Appropriate Duration of Therapy

Cardiothoracic

• Recommendation: < 72 hours
 – studies demonstrate no difference in single, short, or longer courses of therapy.
 – **No evidence** to support continued coverage of mediastinal drains

Gastroduodenal

• Recommendation: single dose
 – 2 studies demonstrate equal efficacy with multiple dose

Am J Health Syst Pharm 1999; 56:1839-88
Appropriate Duration of Therapy

Hepatobiliary
- Recommendation: single dose
 - multiple studies demonstrate equal efficacy with single and multiple dose

Appendectomy
- Recommendation: single dose
 - studies with single dose or multiple dose regimens demonstrate similar infection rates

Colorectal
- Recommendation: single dose
 - multiple studies single vs multiple dose, only 2 with same regimen - no difference in infection rates
Appropriate Duration of Therapy

Vascular
- Recommendation: 24 hours
 - inadequate studies examining < 24 hours

Solid Organ Transplant
- Insufficient studies for heart and liver
- Recommendations:
 - Heart: 48 - 72 hours
 - Liver: 48 hours
 - Kidney: single dose

Am J Health Syst Pharm 1999; 56:1839-88
Prophylactic Antibiotics
Appropriate Choice

- Narrowest spectrum to cover likely pathogens
- Avoid agents that are therapeutic choices
 - 3rd/4th generation cephalosporins and new agents should not be used
- Agents with moderately long half-life
- Good safety profile
<table>
<thead>
<tr>
<th>Surgical Category</th>
<th>Antimicrobial Agent and Adult Dose</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular and Non-Cardiac Thoracic</td>
<td>Cefazolin 1gm IV x 1</td>
<td>24 hours or less</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>Amoxicillin/Sulbactam 3gms IV x 1</td>
<td>Pen Allergy:</td>
</tr>
<tr>
<td>Biliary, Gastroduodenal, Appendix (non-perf), Colorectal</td>
<td></td>
<td>Clindamycin 900mg IV x 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gentamicin 5mg/kg IV x 1</td>
</tr>
<tr>
<td>Orthopedic</td>
<td>Cefazolin 1gm IV x 1</td>
<td>Most clean cases without prosthetic do not require prophylaxis</td>
</tr>
<tr>
<td>With prosthetic Material</td>
<td>Most clean cases without prosthetic do not require prophylaxis</td>
<td></td>
</tr>
<tr>
<td>Head and Neck</td>
<td>Cefazolin 1gm IV x 1</td>
<td>Most clean cases without prosthetic do not require prophylaxis</td>
</tr>
<tr>
<td>With prosthetic Material</td>
<td>Most clean cases without prosthetic do not require prophylaxis</td>
<td></td>
</tr>
<tr>
<td>Head and Neck</td>
<td>Cefazolin 1gm IV x 1</td>
<td>Cephalosporin or Pen Allergy:</td>
</tr>
<tr>
<td>Clean-Contaminated</td>
<td>Metronidazole 500mg IV x 1</td>
<td>Clindamycin 900mg IV x 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gentamicin 5mg/kg IV x 1</td>
</tr>
<tr>
<td>Surgical Category</td>
<td>Antimicrobial Agent and Adult Dose</td>
<td>Notes</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Neurosurgical</td>
<td>Cefazolin 1gm IV x 1</td>
<td></td>
</tr>
<tr>
<td>OB/GYN</td>
<td>Cefazolin 1gm IV x 1 or Amp/Sulb 3gms IV x 1</td>
<td>Antimicrobial should be administered after clamping umbilical cord</td>
</tr>
<tr>
<td>OB/GYN</td>
<td>Cefazolin 1gm IV x 1</td>
<td></td>
</tr>
<tr>
<td>Urologic</td>
<td>Sulfamthoxazole/Trimethoprim 160mg (TMP component) IV x1</td>
<td>Alternative agents may be necessary based on results of prior urine cultures. Doxycycline 100mg IV x1 may be given for patients with a sulfa allergy.</td>
</tr>
<tr>
<td>Hysterectomy</td>
<td>Cefazolin 1gm IV x 1</td>
<td></td>
</tr>
</tbody>
</table>
Perioperative Antibiotic Prophylaxis Protocol

Notes:

- For patients with known colonization with MRSA or previous MRSA infection, vancomycin 1gm IV x1 may be used for prophylaxis. *Vancomycin must be given over 60 minutes to minimize the likelihood of Red Man’s Syndrome.*

- For patients with cephalosporin allergies, or anaphylactic or other life-threatening allergies to penicillin agents, clindamycin 900mg IV x1 should be used.

- For patients weighing >100kg, cefazolin 2gm IV x1 should be used as an alternative to cefazolin 1gm IV x1.

- For all procedures in which cefazolin is administered, a repeat dose should be given if the procedure lasts >4 hours.
Perioperative Antibiotic Prophylaxis Protocol

Pediatric Dosing

<table>
<thead>
<tr>
<th>Antimicrobial Agent</th>
<th>Pediatric Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cefazolin</td>
<td>30mg/kg IV</td>
</tr>
<tr>
<td>Ampicillin/Sulbactam</td>
<td>50mg/kg IV (based on ampicillin component)</td>
</tr>
<tr>
<td>Metronidazole</td>
<td>10mg/kg IV</td>
</tr>
<tr>
<td>Sulfamethoxazole/Trimethoprim</td>
<td>10mg/kg IV (based on trimethoprim component)</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>15mg/kg IV</td>
</tr>
<tr>
<td>Doxycycline</td>
<td>Not recommended for pediatric patients</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>3mg/kg IV</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>15mg/kg IV (must be given over 60 minutes)</td>
</tr>
</tbody>
</table>
PERIOPERATIVE ANTIBIOTIC PROPHYLAXIS

§ GOAL: To reduce SSI

†COMMON PATHOGENS:

‡Clean Surgical procedure (Risk <2%)
Most do not require antibiotics

Dirty Procedure (Risk >30%)
Infection present: Antibiotic indicated as therapy

Clean-Contaminated (Risk 5-15%)
Contaminated (Risk 15-30%)

Cefazolin ± Metronidazole or Clindamycin + Gentamicin
Duration <24 hrs

Antibiotic indicated
1. Implantation of prosthetic materials
2. Cardiovascular procedures
3. Vascular procedures
4. Neurosurgical Procedures
5. Possibly breast and hernia

Recommended antibiotics
- Cefazolin
 * Clindamycin/Erythromycin

Duration: Cardiovascular: <72 hrs
Vascular <24 hours
Others: ¥ Single dose

*Penicillin/Cephalosporin allergic patients. ¥ Redose if procedure lasts longer than 4 hrs.
†Consider using vancomycin in pts colonized with MRSA/MRSE
§ Antibiotics should be giving within one hr of procedure (During induction of anesthesia)
‡Duration of antibiotic prophylaxis for solid organ txp: Heart/Lung 48-72 hrs; Liver 48 hrs kidney single dose.
Surgical Site Infection

- Perioperative hygiene
- Skin preparation
- Hair removal
- Remote site infection

- Catheterization
- Irrigation
- Oxygen Tension
- Temperature
- Glucose control
- OR traffic
Perioperative Hygiene

- Shower with antiseptic soap the evening before and morning of elective surgery.
- Educate patients about their responsibility in preventing surgical site infection.
Skin preparation

• Chlorhexidine-based products are superior to iodine-based products for the prevention of surgical site infection.
• Chlorhexidine-based soaps are superior to iodine-based soaps for hand scrub.
 – Waterless scrubs are as good or better than water-based products.
Hair removal

- Hair removal should be performed immediately before the operative intervention.
- Clipping is superior to shaving
- Depilatory agents are effective but difficult to use.
Remote site infection

- Increased surgical site infection rate.
- Elective operative interventions should be rescheduled after treatment of the remote site infection.
Bladder catheter

- Increased infection rate for clean cases
 - Hernia repair
 - Total joint replacement

- Avoid catheterization
 - Void immediately before intervention
 - Limit intraoperative fluid administration
Irrigation of the Incision

- Meta-analysis of 7 studies
- No advantage to saline lavage
- No advantage to antibiotic lavage if the patient is receiving systemic antibiotics

Activities in excess of the removal of gross contamination using minimal volumes of a warm crystalloid solution are rituals that are devoid of biologic advantage.

Pressure Irrigation of the Incision After Appendectomy

- Randomized controlled trial of 350 patients
- A total of 283 patients (81%) had appendicitis
 - 34% had complicated appendicitis
- Randomization scheme
 - Group I (control): antibiotics alone
 - Group II (experimental): antibiotics plus pressure irrigation of incision (300 mL saline, 20-mL syringe, 19 gauge catheter)
- SSI rate decreased in complicated cases
 - 72.5% in group I vs. 16.3% in group II ($P = 0.000001$)

Perioperative Supplemental Oxygen and the Risk of SSI

- 500 patients undergoing colorectal resection
- Standardized anesthesia and antibiotics
- 30% vs. 80% inspired O₂
 - During surgery and first 2 hours of recovery
- SSI suspected if culture-positive drainage of pus
- 80% oxygen group had less infections
 - 5.2% vs. 11.2% (30% O₂ group) (P=0.01)

Perioperative Hypothermia and the Risk of SSI

- 200 patients undergoing colorectal surgery
- Standardized anesthesia and antibiotics
- Randomized to routine care (hypothermia, 34.7°C) or additional warming (normothermia, 36.6°C)
- SSI suspected if culture-positive drainage of pus
- Hypothermia group
 - More infections (18 vs. 6 in the normothermia group, \(P<0.01 \))
 - Longer hospitalization (2.6 days, \(P<0.01 \))

Early Postoperative Glucose Control Predicts Nosocomial Infection Rate in Diabetic Patients

- 100 initially uninfected diabetic patients undergoing elective surgery
- All patients received antibiotic prophylaxis
- Good glucose control, $\leq 220 \text{ mg/dL}$
- Poor glucose control and infection
 - All infections: RR 2.7 (31.3% vs. 11.5%)
 - Non-UTI infections: RR 5.9

RR, relative risk.

Glucose Control and SSI
Cardiac Surgery

- 1,000 consecutive patients
- 3% developed SSIs

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes</td>
<td>2.76</td>
</tr>
<tr>
<td>Postoperative hyperglycemia</td>
<td>2.02</td>
</tr>
</tbody>
</table>

Chronic poor glycemic control was not a risk factor

Prevention of Surgical-Site Infection

• Preoperative
 – Preparation of patient
 – Hand/forearm antisepsis for surgical team
 – Management of infected or colonized surgical personnel
 – Antimicrobial prophylaxis

Prevention of Surgical-Site Infection

- **Intraoperative**
 - Ventilation
 - Cleaning and disinfection of environmental surfaces
 - Microbiologic sampling
 - Sterilization of surgical instruments
 - Surgical attire and drapes
 - Asepsis and surgical technique

- **Postoperative incision care**

- **Surveillance**

Half this game is 90% mental.

Yogi Bera
Good judgment comes from experience but experience only comes from bad judgment.